The CINBAD Project Update

24th June 2008

Milosz Marian Hulboj - CERN/Procurve

Ryszard Erazm Jurga - CERN/Procurve

Agenda

- Anomaly definition and detection the survey
- sFlow data source
- sFlow datagram structure
- Estimates of sFlow data from CERN network
- Scalable collector design
- Large scale sFlow collection initial testing
- Data aggregation
- Visit at HP Procurve in Roseville

Anomaly Definition (1)

- Anomalies are a fact in computer networks
- Anomaly definition is very domain specific:

Network faults	Malicious attacks	Viruses/worms
Misconfiguration		

- Common denominator:
 - "Anomaly is a deviation of the system from the normal (expected) behaviour (baseline)"
 - "Normal behaviour (baseline) is not stationary and is not always easy to define"
 - "Anomalies are not necessarily easy to detect"

Anomaly Definition (2)

- Just a few examples of anomalies:
 - Unauthorised DHCP server (either malicious or accidental)
 - NAT (not allowed at CERN)
 - Port Scan
 - DDoS attack
 - Spreading worms/viruses
 - Exploits (attacker trying to exploit vulnerabilities)
 - Broadcast storms
 - Topology loops
- Examples of potential anomaly indicators:
 - TCP SYN packets without corresponding ACK
 - IP fan-out and fan-in (what about servers i.e. DNS?)
 - Unusual packet sizes
 - Very asymmetric traffic to/from end system (what about servers?)
 - Unwanted protocols on a given subnet (packets 'that should not be there')
 - Excessive value of a certain measure (i.e. TCP Resets)
 - ICMP packets

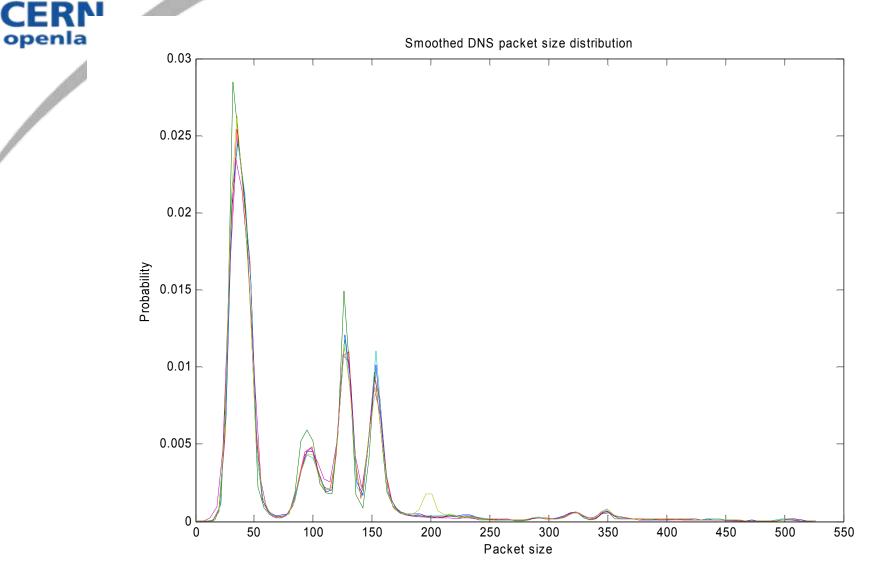
Anomaly Detection (1)

Signature based detection methods:

Derform well against known problems

Example:

Martin Overton, "Anti-Malware Tools: Intrusion Detection Systems", European Institute for Computer Anti-Virus Research (EICAR), 2005


00000760	E7	6F	8C	88	ЗA	79	B3	9D	9D	52	44	AD	62	61	3D	8F
00000770	98	6D	4C	07	C2	00	E5	4C	48	F0	91	4E	EΒ	87	89	77
00000780	7E	E0	83	B1	94	94	CC	E9	F5	97	97	53	95	5C	95	AF
00000790	C6	40	C5	CA	AC	25	8E	47	F 1	5D	0B	9F	BB	CB	Ά6	67
000007A0	DB	44	E8	D2	48	3B	8F	76	CB	9E	E 1	53	FB	\mathbf{FB}	41	11

Signature found at W32.Netsky.p binary sample Rules for Snort:

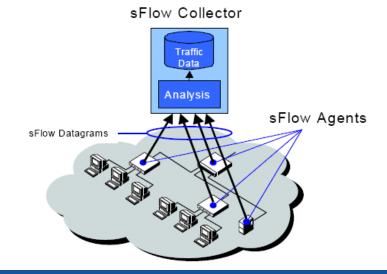
alert tcp \$EXTERNAL_NET any -> any any (msg:"W32.NetSky.p@mm - SMB";content:"|4E EB 87 89 77 7E E0 83 B1 94 94 CC E9 F5 97 97 53 95 5C 95 AF C6 40 C5 CA AC 25 8E 47 F1 5D 0B|"; classtype:misc-activity;rev:1;)

Anomaly Detection (2)

Anomaly Detection (3)

- Statistical detection methods examples:
 - Threshold detection:
 - Count occurrences of the specific event over ΔT
 - If the value exceeds certain threshold -> fire an alarm
 - Simple and primitive method
 - Profile based:
 - Characterise the past behaviour of hosts (i.e. extract features, patterns, sequential patterns, association rules, classify into groups)
 - Detect a change in behaviour
 - Detect suspicious class of behaviour

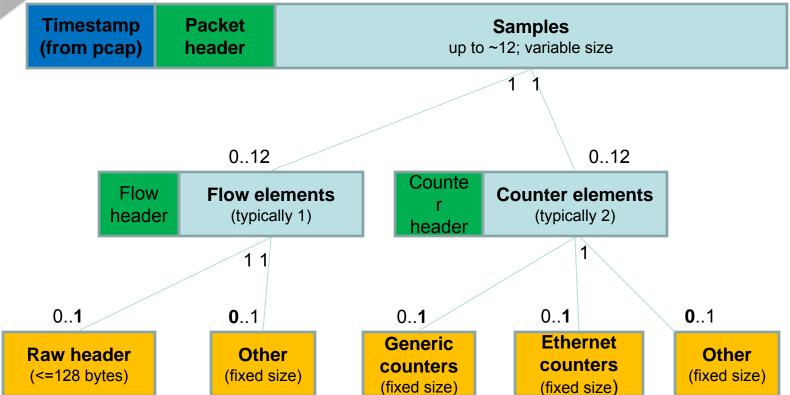
Anomaly Detection (4)



- Important questions:
 - Which metrics provide good input for anomaly detection?
 - Do the same types of anomalies affect the metrics in similar way? (Is there a pattern?)
 - Are we able to observe sufficient amount of network data (are the anomalies observable)?
 - Are we able to do post-mortem analysis?
 - Can we understand what had happened with the collected metrics?
 - It is not an online analysis it is not possible to get any more data!

sFlow Packet Sampling – Overview

- A mean of passive network monitoring
- RFC 3176
- Multi-vendor standard
- Complete packet header and switching/routing information
- Some SNMP counters information
- Low CPU/memory requirements scalable

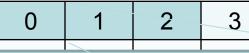


sFlow Packet Sampling – Usage

- Profiling network traffic
- Building flow statistics
- Accounting and billing
- Route profiling (forwarding information)
- Security analysis / intrusion detection:
 - Packet headers analysis
 - Traffic pattern analysis

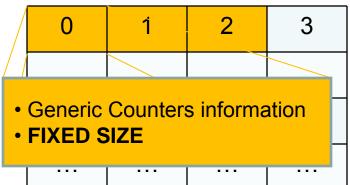
sFlow Datagram Structure

 Variable format of datagram makes direct access to sample elements impossible → parsing needed


sFlow Datagram Structure Issues

- sFlow datagram tree-like format is not ideal
- Our main wishes:
 - Fast direct access to all sample elements
 - Having all the needed data in one place
 - Avoiding multiple parsing of the sFlow tree
- At least two possible solutions:
 - Flattening of the tree
 - Introducing some indirection level (pointer-like)

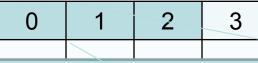
sFlow Flattened Approach (1)


Counter sample metadata

- Timestamp
- Relevant header information (agent, ...)
- Relevant counter sample information (iface, ...)

• FIXED SIZE

Generic counters


Flattened Approach:

- Each metadata entry describes one counter data entry
- Could be stored in one file if only one type of counters is to be stored
- Random and direct access to all the data
- Space overhead
 - more repetition of metadata than in tree structure



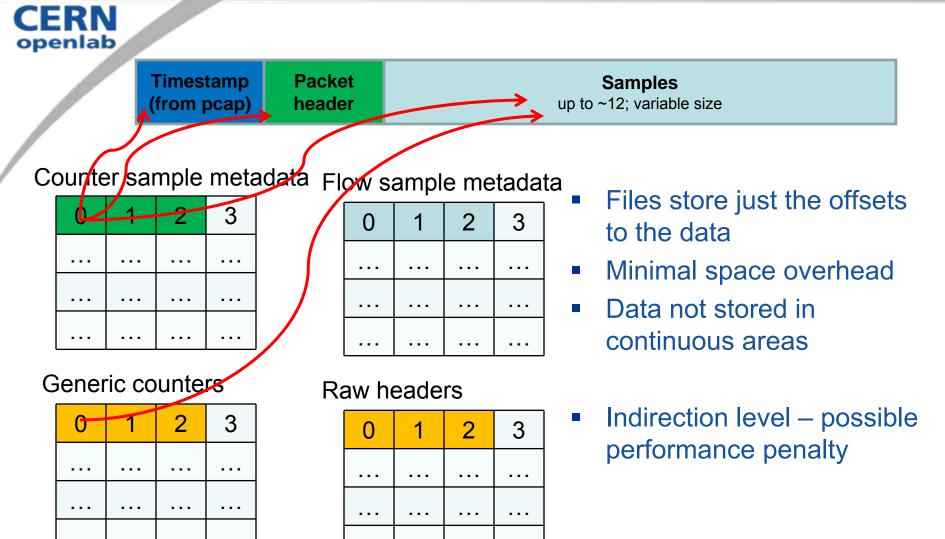
Flow sample metadata

- Timestamp
- Relevant header information (agent, ...)
- Relevant flow sample information (iface, sampling rate, ...)
- FIXED SIZE

Raw headers

- Raw packet headers from sFlow
- Tcpdump compatible pcap file
- Padding for packets <128 bytes
- FIXED SIZE

Flattened Approach:


- Each metadata entry describes one flow data entry
- Stored in two different files – pcap compatibility
- Random and direct access to all the data
- Space overhead:
 - more repetition of metadata than in tree structure
 - Internal fragmentation (due to padding)

Flattened Approach Summary

- Solution provides direct access to all the data
- All the data is available in one (two) place(s)
- Raw headers stored in pcap compatible format:
 - Wide range of tools support pcap files (i.e. tcpdump, SNORT)
- Data stored in continuous area
- Space overhead (redundant metadata + padding)
- For now we think it is a good and flexible solution
- We will have to carefully select metadata to store in the flattened form (minimise space overhead)

Indirect Approach

. . .

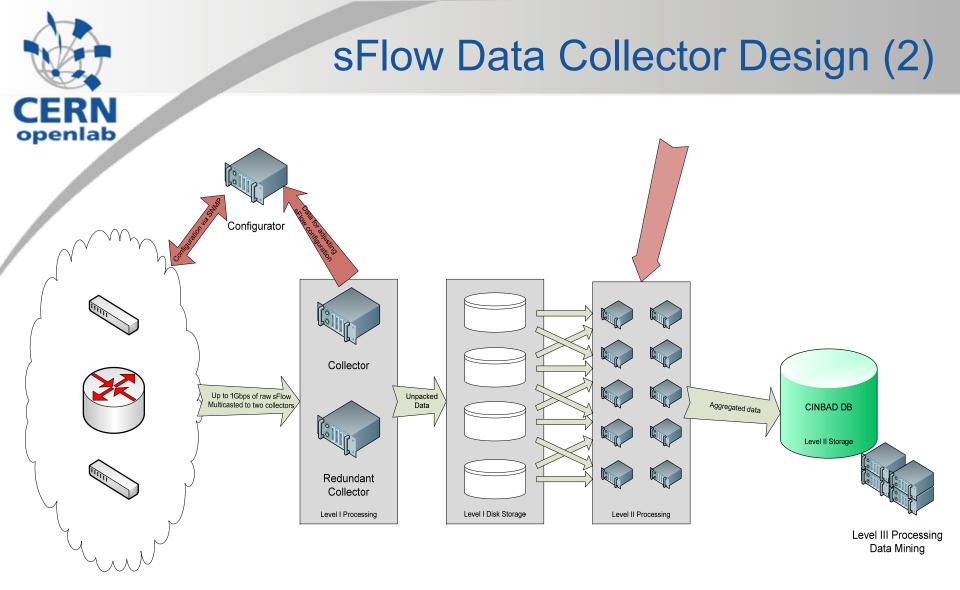
. . .

. . .

. . .

. . .

. . .


. . .

. . .

sFlow Data Collector Design (1)

- Estimated data collected
 - ~3TB of raw sFlow datagrams from 2000 network devices per day
- Survey on data acquisition @ CERN:
 - Current Oracle and application performance in use at CERN: Lemon, PVSS, etc
 - LHC experiments experts consulted:
 - High performance Data storage
 - Data format and representation
 - Analysis principles
- Conclusion: follow a two level strategy

Highly Scalable Architecture

Rich database for investigative data mining

Why Data Aggregation? (1)

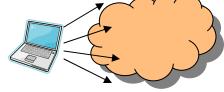
Randomness of sFlow data

- one random packet header is not representative
 - information carried by individual packets is not statistically interesting except pattern matching
 - Do you know what are three kinds of lies?
 - Lies, damned lies, and <u>statistics</u>. Benjamin Disraeli
- more packet headers are needed to draw conclusion about the network traffic
 - requires some time interval to collect packets
 - multiple occurrence of similar packets is interesting
 - many packets can contribute partial information into global picture of the network traffic

Why Data Aggregation? (2)

- Analysis of sFlow data
 - statistical analysis
 - classification into groups based on timestamp and packet attributes (i.e. type of protocol, source and destination addresses)
 - usage of numerical descriptors like mean, standard deviation to summarize the classified data over some time interval
 - inference about the network traffic, i.e.
 - setting up baseline,
 - modeling patterns,
 - identifying trends
 - showing the difference between the healthy and anomalous network traffic
 - correlation with other data sources, i.e. antivirus, intrusion detection systems

Key Packet Attributes


- Device and interface where the packet was sampled
- Packet size
- Source and destination MAC/IP addresses
- Source and destination TCP/UDP ports
- Protocol type (i.e. IP, ARP, ICMP, OSPF, TCP, UDP)
- Protocol specific information (i.e. TCP flags, ICMP codes)

Examples of Aggregates

Number of destination IPs for a given source IP

IP address fanout (sweep)

- Number of source IPs for a give destination IP
 - Denial of Service Attack
- Number of different TCP/UDP ports for a given source and destination address pair
 - TCP/UDP port scan
- Ratio of small packets to big packets

Current state of data collection

- 1 IA-64 1.6G server with 2GB RAM and afs scratch space as a temporary storage
 - CINBAD sflow collector
- 101 devices with sflow enabled (90 switches, 11 routers) in four buildings
 - CINBAD snmp configurator
- ~1600 active interfaces
- ~2000 samples /second
- ~40GB/ day

Visit to HP ProCurve in Roseville (1)

- Series of meetings with various ProCurve engineers and mathematician from HP Labs
 - Anomaly detection
 - aggregates that could be useful to reveal network anomalies
 - all aggregates are biased by sampling
 - flow estimation from sflow data seems to be inaccurate and computationally expensive
 - simple volume metrics are used in practical applications
 - entropy is promising since is more resistant to sampling
 - Anomaly detection algorithms
 - Review of the CERN list of network anomalies

Visit to HP ProCurve in Roseville (2)

- sFlow and snmp implementation issues in ProCurve switches
 - List of potential improvements
- Virus Throttling (VT) mechanism
 - anomaly detection (IP fanout) in the switch
 - access to the full network traffic, small computing power
- New data source for the CINBAD project
 - Information about new flows using existing traffic mirroring feature with Access Control List (ACL)

Conclusion

- We achieved the prototype implementation of a sFlow collector and snmp configurator
- We gradually collect more and more sFlow data
 - without side effects on our network infrastructure
- We have been collecting the requirements for data anomaly detection within CERN
 - to be continued at ProCurve